冷链物流运输车辆因装载冷藏设备,车身结构与普通货车不同,且货物(如生鲜、药品)对运输时间敏感,不停车超限超载检测系统针对这些特点进行特殊适配。在车型识别环节,系统通过深度学习算法,专门训练冷链车识别模型,区分冷链车与普通货车,避免因车身结构差异导致轴型误判;在检测效率上,优化检测流程,将车辆从进入检测区域到完成数据上传的时间压缩至 2 秒,减少冷链车停留时间,保障货物新鲜度;此外,系统还可额外加装温度传感器,实时监测冷链车冷藏温度,若温度超出正常范围,同步触发温度预警和超限预警,实现 “重量 + 温度” 双重监管,为冷链物流运输安全提供保障。

应对跳磅、冲磅等行为的解决方案
在实际应用中,部分驾驶员会通过跳磅、冲磅、走 S 形等方式逃避检测,针对这些行为,不停车超限超载检测系统形成了完善的应对方案。系统通过测速与称重数据联动分析,当车辆行驶速度突然变化(如冲磅时瞬间加速),或行驶轨迹偏离正常车道(如走 S 形),系统会自动标记为可疑数据,并启动二次复核机制;同时,激光轮廓仪实时监测车辆轮胎位置,若发现轮胎未完全压在传感器上(如跳磅时轮胎悬空),立即触发预警,提醒执法人员重点核查。此外,系统还会通过历史数据对比,识别频繁出现可疑数据的车辆,将其纳入重点监管名单,从源头遏制行为,确保检测结果真实可靠。

高速公路主线:全天候治超的 “隐形卫士”
不停车超限超载检测系统在高速公路主线的应用,改变了传统治超依赖人工的模式。系统通过在道路主线布设称重传感器、高清摄像头和设备,当车辆以正常行驶速度(通常 60-km/h)通过检测区域时,能瞬间完成重量、轴数、等数据的采集与分析。相较于传统治超站,该系统无需车辆减速停车,每小时可检测上千辆车次,有效解决了主线拥堵、执法效率低的痛点。目前,全国多数省级高速公路网已实现主线检测全覆盖,为道路养护和交通安全筑牢道防线。

轻量化算法在移动检测设备中的应用
移动检测设备因硬件配置有限,对算法轻量化要求较高,不停车超限超载检测系统通过优化算法,实现检测功能与设备性能的匹配。在车型识别算法上,采用模型压缩技术,将原有算法模型体积缩小 60%,同时保持 95% 以上的识别准确率,确保移动设备在有限算力下快速完成车型判断;在称重数据处理方面,简化复杂的误差修正模型,保留核心修正参数,在保证 ±2% 精度的前提下,将数据处理时间缩短至 0.5 秒;此外,算法还支持自适应调整,根据移动设备的电池电量、存储空间实时优化运行策略,当电量不足时,自动关闭非必要功能,优先保障称重和数据上传核心功能。轻量化算法的应用,让移动检测设备在性能有限的情况下,仍能实现、检测。



































冀公网安备13010402003046号