其中imagemerge1表示初步融合图片,imagemerge2表示融合图片,k1代表image1的权重系数,k2代表image2的权重系数,a表示拉伸系数,b表示拉伸偏移;image1表示凸台图片,瑕疵检测,image2表示端面图片。
根据本发明的一个方面,所述步骤s2包括:
s21、利用层拍相机沿z轴方向对镜头内部进行层拍获得多张图片,并按照顺序等分为多组;
s22、对每一组图片进行缺陷分割和识别,将符合缺陷标准的所有缺陷放入到缺陷容器中;
s23、在所述缺陷容器中,产品瑕疵检测,通过比较缺陷中心距离偏差值将同一位置处的缺陷筛选出来;
s24、根据清晰度算法筛选出同一位置处表现为清晰的缺陷,表面瑕疵检测系统,按照此缺陷判断其尺寸是否为缺陷产品。
s11、在所述镜头的端面或凸台上制作模板图像获得端面图片和凸台图片,并进行匹配定位;
s12、对所述凸台图片进行仿射变换后与端面图片对齐;
s13、根据自定义的核提取所述端面图片的高频分量;
s14、利用加权平均值算法叠加所述端面图片和所述凸台图片获得融合图片;
s15、依照所述融合图片进行缺陷检测。
我们是一群由杭州电子科技大学赵巨峰带领的台湾研发及业务团队
根据本发明的一个方面,瑕疵检测系统,在所述步骤s33中,对所述检测图片进行分割的方法包括全局阈值分割方法、动态阈值分割方法或均值阈值分割方法。
本发明的镜头缺陷检测方法,能够对镜头进行的检测,包括对镜头端面和凸台的缺陷检测、对镜片区域内尘、内脏、脱模、毛丝等缺陷检测、对镜片、胶水、镜筒伤的检测和对镜头上表面和下表面的检测。并且检测方法具有高精度、的优点。
瑕疵检测-苏州宣雄智能-产品瑕疵检测由苏州宣雄智能科技有限公司提供。行路致远,砥砺前行。苏州宣雄智能科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为检测仪具有竞争力的企业,与您一起飞跃,共同成功!